Flow around a Suddenly Accelerated Rotating Plate at Low Reynolds Number
نویسندگان
چکیده
The study explores the evolution of flow field and forces of a low-aspect-ratio flat plate undergoing an accelerated rotating surge motion from rest. The measurements were performed in a water tank at Reynolds numbers of 20,000, based on the chord length and terminal velocity at 75% span. A tomographic Particle Image Velocimetry (Tomographic-PIV) technique was used in order to capture three-dimensional velocity fields at different phases of the rotational motion, in combination with direct force measurements with a six-component water submergible force sensor. Experiments were performed for angles of attack of 30°, 45° and 60°. The results show the temporal development of the generation of lift and drag in conjunction with the development of vortical structures around the wing. The force measurements reveal the temporal variation of the forces during the motion: initial added mass peak at the end of the acceleration phase; subsequent decrease and increase to the maximum with circulatory effects; and decrease to steady state values. Although the general trend is similar for the different angles of attack, the magnitudes and phasing of the circulatory peak differs. Three dimensional flow fields show the evolution of vortical structures, starting from the formation of coherent and well-defined vortices (i.e. leading edge vortex, trailing edge vortex and tip vortex) to a stalled wing flow field with several small-scale structures. The leading edge vortex moves downstream on the top of the wing surface while it bursts into small scale structures. Surprisingly, this bursting and loss of vortex coherence is not reflected in a loss of lift. The spanwise flow structure also changes in accordance with the behavior of vortex formations such that initially it is mostly confined in the cores of leading and trailing edge vortices, however, as the motion progresses, it occurs around the trailing edge.
منابع مشابه
MHD rotating heat and mass transfer free convective flow past an exponentially accelerated isothermal plate with fluctuating mass diffusion
In this paper, we have considered the problem of rotating, magnetohydrodynamic heat and mass transfer by free convective flow past an exponentially accelerated isothermal vertical plate in the presence of variable mass diffusion. While the temperature of the plate is constant, the concentration at the plate is considered to be a linear function with respect to time t. The plate is assumed to be...
متن کاملمطالعه عددی انتقال حرارت در فضای مابین دو مخروط ناقص هممحور
The behavior of the flow between two coaxial conical cylinders with the inner one rotating and the outer one stationary is studied numerically. The angular velocity of the inner cone cylinder was raised step by step from the rest until reaching its final speed. In this work we first present a numerical simulation of the flow characteristics and the heat transfer mechanism of a fluid in the spac...
متن کاملConvective Heat Transfer from a Heated Rotating Disk at Arbitrary Inclination Angle in Laminar Flow
In this paper, experimental data and numerical results of heat transfer from a heated rotating disk in still air are presented over a large range of inclination angles and a dimensionless correlation is developed for forced, natural and mixed convection. The measured Nusselt number over the rotating disk is compared with the numerical results. The goal of the present research is to develop a se...
متن کاملElastico-Viscous Flow between Two Rotating Discs of Different Transpiration for High Reynolds Numbers (RESEARCH NOTE)
The flow in an elastico-viscous fluid between two co-axial infinite rotating porous discs is considered for high cross flow Reynolds number. The discs are rotating with different angular velocity and the injection rate of the fluid at one disc is different from the suction rate of other disc. The effect of suction parameters on the velocity components have been investigated numerically and solv...
متن کاملPressure Calculation in the Flow Between Two Rotating Eccentric Cylinders at High Renolds Numbers
This paper reports the result of an analytical investigation of a steady, incompressible and viscous flow between two eccentric, rotating cylinders at high Reynolds number. A one dimensional case is far from reality because the gap between the cylinders is very small. Further, when their axes are displaced by a small distance, usually caused by bearing loads, two dimensional effects become obvi...
متن کامل